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Flows are considered in narrow gaps, whose mean surfaces are being formed by two 
planar parts of a sphere, a right circular cone, an ellipsoid, one- and two- 
sheet ellipsoids, a paraboloid, and a torus, 

The application of the general results obtained in [i] can be illustrated on flows in 
channels with gaps. The mean surface in such channels is the surface of revolution ~ = 
const, on which can be introduced meridional (~ = ~) and angular (~2 = ~) coordinates, while 
the dimensionless Lame coefficients are independent of the angular coordinate, i.e., H, = Hq 
(q, ~); Ha = H~(q, ~). In this case Eq. (14) of [I] is written in the form 

( ) 0zH(~ �9 H~ Off(~ + - - = 0 ,  ( i )  H~ 0 "H~ 
H~ a~ a~ a~ ~ 

and here one naturally introduces the new independent variable 

Hn (% ~) d~ (~ = const), (2) Zo(% ~) = .f H~ (% ~) 
rio 

which makes it possible to replace Eq. (i) by the two-dimensional Laplace equation 

O21-I(O) 02II(o) 
oxo 2 +--0~z = ~  (3) 

If, in particular, a narrow gap channel is considered with two sides restricted by the 
planar segments n = q, and q = n2, on which are given boundary conditions of the first 
[~(ni, q) = Hi(q)], second [sH(~i,~)/an = fi(~)], or third [aK(qi, ~)/an - xiH(ni, ~) = 
fi(~)] kind, then the solution of the corresponding problem is easily obtained by means of 
the method of Fourier variable separation, and 

H (~ = C0%o + ~ (C~ exp (n~o) + C-n exp (--  n%0)l cos (n~). (4) 
n = l  

The c o n s t a n t s  Co, C n ,  and C-n a r e  f o u n d ,  as  u s u a l ,  from the  s o l u t i o n s  o f  t he  l i n e a r  
a l g e b r a i c  e q u a t i o n s ,  which a r e  o b t a i n e d  by s u b s t i t u t i n g  e x p r e s s i o n  (4) i n t o  the  boundary  
c o n d i t i o n s .  In  view of  (2) and Eqs. (13) o f  [1] t h e  t o t a l  f l u i d  d i s c h a r g e  t h r o u g h  the  annu-  
l a r  channe l  c o n s i d e r e d  i t  

2 2~ 2a H~ OH(~ 2 0Xo H~ 
Q = - - - - r o V h  [ , - - d ~  -- roVhCo [ d% (5) 

3 ~ H~ O~ 3 6 O~ H~ 
i.e., 

Q 4n roVhCo or C 0 -  3Q . 
3 4nroVh 

Thus,  f o r  Re = 0 t he  p r e s s u r e  drop ave raged  over  the  a n g u l a r  c o o r d i n a t e  �9 a t  the  p o r -  
t i o n  of the narrow gap channel between cross sections n = n) and q = n= 

roO~V [H(o ) _H(o  ) 39~Q 
AP (~ = (n,) (n~)] = - -  [%o (n~, ~)-- %0 (nl, ~)]. (6) 

h z 4~ha 

In the absence of inhomogeneities in the angular coordinate ~ in the boundary conditions, 
the coefficients Cn, C_ n = 0, and expression [6] provides not only the averaged, but also the 
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local values of the pressure drop for 

If at the cutoffs of the narrow 

fluid fluxes 2qn = 2q~,(= 1 1 OH 
of [i] 3 H,  0~ 

3 
1 ] ( 1 )  - -  

35 

and the pressure component quadratic 
expression 

27 p~) - -  

560 

arbitrary meridional cross sections ~ = const. 

gap channel ~ = ~ and n = ~ are given the specific 

boundary conditions of the second kind), then by (20) 

[s  1 .  g n OII(~ l 0  n g w OH(~ l a ~  
i n  t h e  d i s c h a r g e  p ( * )  = pVag (~) i s  d e t e r m i n e d  by t h e  

pQa 3 PV~ ~ {2nC0 [C,~ exp (nx0) + 
~ d h  ~ %~ 35 ~ / ~  ~=~ 

+ C_~exp(--nxo)lcos(n~) + n z [C~exp(2nT.o)@ CL, exp ( - -  2nXo)l--2nzC,~C_ncos(2ncp)}; X~ = H J  ~. (7) 

To calculate the cubic pressure component p(2) in the fluid discharge for boundary con- 
ditions of the second kind one may use Eq. (26) of [i], which in the case under consideration 
is written in the form 

H(2) = __ 3~(2 ) ~ 104 C~ 1 + 4 
363 825 H~H~ On 

The p o t e n t i a l  ~ (2 )  s a t i s f i e s  t h e  e q u a t i o n  

a [ H~ = 0 
0 n \ H ,  

and t h e  b o u n d a r y  c o n d i t i o n s e q u i v a l e n t  to  (25) o f  

H n 0 n 363 825 On H~H n O~ 

• Hn On H~ H~H n O n H~ 

a t  t h e  c r o s s  s e c t i o n  n = n ,  and n = n2. However ,  
v a n i s h e s  i d e n t i c a l l y .  C o n s e q u e n t l y ,  ~ (2)  = c o n s t .  I t  can  b e  assumed t h a t  0 (*)  = 0.  Thus ,  
t h e  p r e s s u r e  component  p (2 )  = ro0vVh_2Re2E(2)  i s  d e t e r m i n e d  by t h e  e x p r e s s i o n  

p(~) = _  13 pQ3 4 @ % OH~ 
431 200" ~3r~h-------T X~; E2 = 4 " (8) H~H~ On 

and, confining ourselvesto the expansion terms written down, then for a given fluid dis- 

charge Q 

2 

~p = ~ [p(h) (nl) - -  p(h) (n~)l (9) 
h = 0  

We i l l u s t r a t e  t h e  a p p l i c a t i o n  of  t h e  r e l a t i o n s  o b t a i n e d .  The s i m p l e s t  example  i s  a n a r -  
row gap w i t h  a mean s u r f a c e  o b t a i n e d  f rom a s p h e r e  a f t e r  r e m o v i n g  two s e g m e n t s ,  c u t o f f  by 
p a r a l l e l  p l a n e s  (a s p h e r i c a l  b e l t ) .  For  c o n v e n i e n c e  o f  c o m p a r i s o n  w i t h  f l o w s  in  n a r r o w  gap 
c h a n n e l s ,  whose mean s u r f a c e s  a r e  e l l i p s o i d s  of  r e v o l u t i o n ,  we u s e  a s p h e r i c a l  c o o r d i n a t e  
s y s t e m  ~,  n,  ~ ( F i g ,  l a )  o f  no t  e x a c t l y  t r a d i t i o n a l  s h a p e .  The s u r f a c e s  r = c o n s t  a r e  
s p h e r e s  o f  r a d i u s  r o e ;  r = 1 c o r r e s p o n d s  to  t h e  mean s u r f a c e  o f  t h e  n a r r o w  gap c h a n n e l s .  
The s u r f a c e s  n = c o n s t  a r e  c o n e s ,  whose g e n e r a t i n g  l i n e s  fo rm an a n g l e  8 = a r c c o s  n w i t h  t h e  
a x i s  z(--1 <~ n <~ 1 ) .  The s u r f a c e s  ~ = c o n s t  a r e  o l a n e s ,  f o r m i n g  an a n g l e  �9 w i t h  t h e  p l a n e  
y = 0 (0 ~ 2~). Here R = /xa + y= = ro~/~m, z = roan, H0 = ~(i -- n=) -~, H~ ffi 
~--~-~. Thus, the pressure coefficients are 

1 ~ ( l lnl+n ) x o = l l n  1 + ~  . X l =  _ n 2  ;X~= - 4 +  . . . . .  . (10) 
2 1 - - ~  ' I ( l - - n z )  2 2 1 - - n  

a(l:)(~) ) 
? 

a~ 

[1] 

H~ 
H~ 

0 
&l 

the right hand side of the latter relation 
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Fig. i. Schemes of nonplanar slot gaps, formed by coaxial 
shells of revolution. 

It is now natural to consider annular channels, whose mean surface is part of a spheroid 
(an ellipsoid of revolution), formed by two planes perpendicular to the symmetry axis. De- 
noting by the letter k = (a/b) the ratio of lengths of the spheriod axis, consider separ- 
ately the two cases~ k > i and k < i. In the first case we use the prolate spheriodal coor- 
dinates $, h, ~ [2], which are formed by the rotation of ellipsoidal coordinates around the 
major axis of the ellipse. If the foci of the spheroid are located at the points x = y = R = 
0, z = • then the corresponding system is determined as follows (Fig. ib) t 

R = ~ ' V ( ~ 2 - - 1 ) ( 1 - - ~ z ) ;  z = ~ N ;  a = r o ~ ;  b = r o ' l / ~ - - 1 ;  

a-EF----ZF_z 
k = ~ �9 ~ = I f  ~ - - ~  ; H~ = V(~ 2 -  1)(1 - n D  (11) 

" V ~ - F "  t' I - - ~  2 

The s u r f a c e s  ~ = c o n s t  a r e  h e r e  p r o l a t e  s p h e r o i d s  (1 < ~ < ~ ) .  The s u r f a c e  n = c o n s t  
is a two-sheet hyperboloid of revolution with foci at the points z = • forming an asymp- 
totic cone forming with the z axis an angle 8 = arccos n (--I ~ n<-~ I). By (2), (7), and 
(8) 

1 ( "1/~2 _ 1 _1_ -1/~-s ~12 1 ) 
Z0 = -~- In 1 - -  ~1 + V ' ~  -~T" 

I ( V~-,+V~2-~ ----~ I ) ' - ~  In .+ + ~ arcsin rl;  
1 + ~ V ~ - z - ] -  V ~  z -  I % 

1 . [4 + z0 (rt)] (12) 
xl (~2 I)(I --~)' x~ = (I --n~)~V(~ ~- 1)~(~--n ~) 

For k < I one can use oblate spheroidal coordinates ~, h, 
rotating the cofocal elliptic coordinates around the minor axis. 
determined as (Fig. ic): 

[2], which are obtained by 
The corresponding system is 

R : ro' l / i~ z + 1)(1 - -  nz); z = ro~rl; 

k = .  ~ �9 H ~ =  1 / ~  ~ + rlz" 
V ~ '  V l - - r l Z  ' 

a = r o ~ ;  b = r  o - I / ~ + 1 ;  

H~ = ]/(~2 q_ 1) (1 - -  r12). 
(13) 
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Fig. 2. Function Xo, characterizing the pressure in a narrow 
gap channel, vs the coordinate ~, proportional to the distance 
between the cutoff and the equatorial cross section ~ = 0 (z = 
0), for channels with mean surface,~of ellipsoidal (scheme b, 
Fig. i, curves 1-5; scheme c, curves 7-10; and spherical shape 
{scheme a, curve 6) with k = a/b: i) 2, 2) 1.8; 3) 1.6; 4) 1.4; 
5) 1.2; 6) i; 7) 0.8; 8) 0.6; 9) 0.4; i0) 0.2. 

Fig. 3. Dependence of • on n for na-row gap channels with a 
mean surface of hyperbolic (solid lines, scheme d, Fig. i; 
dashed-dotted, scheme e) and cone shapes (dotted lines, scheme 
f) for angles 0: I) I0~ 2) 20; 3) 30; 4) 40; 5) 50; 6) 60; 
7)  7 0 ;  8 )  80  ~ �9 

The surface ~ = const is an oblate spheroid, the length of whose axis of rotation is 2ro~, 
and the radius in the equatorial plane being ro~-~-~ (0 < ~ < ~). The surface n = const 
is a one-sheet hyperboloid of revolution, whose axis coincides with the z axis, and forming 
an asymptotic cone inclined by an angle 0 = arccos ~ to this axis (--1 < n < I). In the case 
given 

1 

- - f  1 + ~ Y U - 4 - F  / V ~  +--7- ~ " 

(~= + 1)(1 - -  g-) 

1 ~1 [4 + %o Ol)] (14)  
( 1 - -  ~")~ Y ( ~  + 1 )" (~ + ~1 ~) 

Figure 2 shows results of calculating the viscous component of the resistance pO (the 
function Xo) for various k values. 

The same coordinate systems can also be used to analyze flows in narrow gap channels, 
whose mean surfaces are other coordinate surfaces. If, for example, the mean surface cor- 
responds to a formation by two planes perpendicular to the symmetry axis as part of a one- 
sheet hyperboloid of revolution, then one can use oblate spheroidal coordinates (13), placed 
in the locations ~ and n, so that (Fig. id) 
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R=roYi l - -~)(~ l~- l - I ) ;  Z=ro~q; H~ 

g .  
' = V ~1~+ 1 " 

= 1/(1 --~z)(~12+ 1); 

The surface ~ = const is here a one-sheet hyperboloid of revolution, forming an asymp- 
totic cone inclined by the angle e = arccos ~ to the z rotation axis (I~I ~ I). The sur- 
face ~ = const is an oblate spheroid, the len th~_h~f whose axis of rotation equals 2ron, while 
the radius in the equatorial plane equals ror + 1 (0 < ~ < ~). Using (2), (7), and (8), 
we obtain 

2 Y~z+~l  z + ~ I V ~  + V l  ~ In - -  

1 .. n (4 + Xo (n)] 
~ - -  ( 1 - - ~ ) ( n ~ +  I) ' ~ =  ( n ~ + I ? V ( I - ~ ) W + n ~ }  " 

(15) 

If the mean surface is cut by two planes, perpendicular to the axis of symmetry, part 
of the two-sheet hyperboloid of rotation, it is natural to use the prolate spheroidal coor- 
dinates (II), putting in them according to the notation used here the coordinates ~ and n, 
so that now 

R = ro ]/(*1 z -  1)(1 __~2); z = ro~] (Fig. ld); 

n2-- 1 ' , %  = V ( I  - - ~ ) i n  ~ - 1). 

Here the surface $ = const 
totic cone inclined by an angle 

= const are prolate spheroids 

is a two-sheet hyperboloid of revolution, forming an asymp- 
e = arccos ~ to the z axis (]$] ~ i), while the surfaces 
with focal distance 2r0(l ~-~ ~ ~ ~). In the case given 

% = T In -V'I ' ~ ~] + 1 - -  

( 1 -I /~12--~a+'Vl--~2 ) 1 - - ] / 1 - - ~  2 ] 1 -I /~z--~2+~l 
- - I n  V,I~----- T ~ - - l n  + __~2 In ; 

n - - 1  1 -f- ]/1 ----~-~ -i/1 ' 

1 ~] [4 + %o (~1)1 (16 )  
Zl = (1 _ ~ z ) ( q z  1)" Z2 = 0 1 2  1)]/(1 _~2)3(~]2 ~2) 

If the mean surface of the annular channel is cut by two planes perpendicular to the 
axis part of the right circular cone, then one can use spherical coordinates, also choosing 
the location of coordinates ~ and ~, so that now (Fig. If) R = ron/~C-~, z = ro~, H n = i, 
H~0 = n/~-~ r. The surface ~ = const is a cone, inclined by an angle 8 = arccos $ to the z 
axis (--i ~ E ~_ I), while the surfaces ~ = const are spheres of radius ron, whose centers 
coincide with apex of the cone (0 < ~ < oo). Now 

In ~] 1 4 + Zo 0]) 
x0--Vi_-cF, x1= (I_~D~ 2, x~= ]/(i_~) 3 (17) 

The dependence Xo(n) for hyperboloids of one-sheet (solid lines), two-sheet (dotted-- 
dashed), and right circular cones (dotted) for various values of the angle 8 is shown in 
Fig. 3. It is seen from the plots and the corresponding equations that the flows in the 
three groups of annular channels considering equations that the flows in the three groups 
of annular channels considered above have common asymptotes for N -> ~. 

To analyze arbitrary flows in a conic narrow gap it is advisable to expand the mean 
surface on a plane, and use in solving the corresponding boundary value problems methods of 
the theory of functions of a complex variable. An example of this approach is available 
in [3]. 

If the mean surface of the annular channel is part of a paraboloid of revolution, cut 
by two planes perpendicular to the symmetry axis z, one can use a parabolic coordinate sys- 
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Fig. 4. Dependence of Xo on n/~ for narrow gap 
channels with a mean surface of parabolic shape 
(scheme g, Fig. I). 

tem ~, n, ~ [2], formed by rotating two-dimensional parabolic coordinates about their axis. 
This system is determined as follows (Fig. Ig): R=r0~; z=~(~]~--~); Hn=~2+q2; 

The surfaces ~ : const and q = const of paraboloids of revolution (0 < ~, h < ~). By (2), 
(7), and (8 )  

%0 =  V l + - ~ - - l n ( - ~ - +  l + - l r  ; 

1 4 + Xo (~l) (18)  
E l = - - ;  %.,.= 

The dependence of the coefficient • on the coordinate n/~ is shown in Fig. 4. For 
n/~ > 3 it is almost linear, since the first equation corresponds to the asymptotic repre- 
sentation 

Xo= T 1--f + o  , - -  o. 

If the mean surface of the annular channel is part of a torus, cut by two planes per- 
pendicular to the symmetry axis z, one can use the toroidal coordinate system ~, ~, ~ [2], 
formed by rotating bipolar coordinates around the perpendicular passing through the middle 
of the segment combining the poles. This system is determined as follows (Fig. ig): 

r o sin ~] R =  r ~  ; z---- ,; 
ch ~ - -  cos ~1 ch ~ - -  cos ~] 

1 sh 
H~ ----- .; H ,  --- 

oh ~ -- cos r l ch ~ -- cos 11 

The surface C = const is a torus, whose circular radius lies in the x, y plane, has a cen- 
ter at the origin of coordinates and a radius rocth E, while the circular transverse cross 
section has a radius ro/sh ~ (0 < C < ~). The surface n = const is for n < ~ part Of a sphere 
of radius rocosec n with center at the point x = y = 0, z = roctg n, located over the x, y 
plane (z > 0). The remaining part of the same sphere corresponds to the surface n' = 2~ -- q 
(0 ~ q ~- 2~). Separating their line is a neighborhood of radius ro with center at the ori- 
gin of coordinates. It corresponds to ~ = ~. The other limit ~ = 0 corresponds to the z 
axis. Part of the x, y plane, lying within the neighborhood C = ~, corresponds to the sur- 
face q = ~, and the remaining part of this plane -- to the surface n = 0 or n = 2~. Using 
(2), (7), and (8), we obtain 

(ch ~ - -  cos ~)2 . (4 sh ~ + ~) (oh ~ - -  cos ~l) S 
Xo--  ; %1= , % ~  

sh ~ sh 2 ~ 4 sh ~ 

The a s y m p t o t e  c o n s t r u c t e d  c a n  b e  u s e d  f o r  e n g i n e e r i n g  c a l c u l a t i o n s  o f  t h e  f l o w  o f  a v i s -  
c o u s  f l u i d  i n  a n a r r o w  gap  c h a n n e l  b e t w e e n  n o n p l a n a r  s u r f a c e s  w i t h  Re << 1 .  The  e s t i m a t e  p e r -  
formed has shown that for engineering calculations we can restrict ourselves to the first two 
expansion terms. Thus, in the absence of inhomogeneities in the angular coordinate ~ in the 
boundary conditions the first iteration is p(,)= (13.10-2ReX')p(0)and the second is p(2)= (16.10_s 

%o 
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Re2~)p<0) . For example, at Re = 0.1, in all cases considered in the present study p(~) is no 
%0 

more than 12% of p(O), while p(~) does not exceed 0.1% of p(O), i.e., in neglecting the third 
expansion term the error in the calculation does not exceed 0.1%. 

NOTATION 

R, z, ~ , cylindrical coordinates of points of the mean surface of an annular channel; ~, 
n, ~ , dimensionless orthogonal coordinate system; ~ = const, surface of revolution correspond- 
ing to the mean surface of the channel; n, ~ , meridional and angular coordinates at the mean 
surface, n = n, and n = n2, boundaries of the annular channel; Hn(n , ~), H~(n, ~), dimension- 
less Lame coefficients; p, pressure; p, fluid density; ~, kinetic viscosity coefficient, V, 
characteristic flow velocity; Q, total fluid discharge through the annular channel; Co, C n, 
C_n, coefficients of expansion (4) in a Fourier series; Xn(n, ~), asymptotic expansion coef- 
ficients of the dimensionless pressure 5, defined by Eqs. (2), (7), and (8) for n = 0, I, 2; 
and Ap, pressure drop in the channel. 

1. 
2. 
3. 
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STABILITY OF THE BOUNDARY LAYER OF LIQUID UNDER A NONUNIFORM TEMPERATURE 

DISTRIBUTION OF THE SURFACE 

Yu. B. Lebedev and V. M. Fomichev UDC 532.526 

We study the effect of a longitudinal gradient of the surface temperature on the 
stability of the boundary layer of an incompressible liquid. A comparison shows 
a good agreement of the results with experimental data. 

Only a relatively small number of works have been devoted to the problem of stability 
and the transition to the turbulent regime in a boundary layer of an incompressible liquid at 
a surface with heat-exchange [1-9]. It was noted in the first investigations (which~ere car- 
ried out for water [1, 2]) that the surface temperature affects considerably the transition 
process. The nature of this influence is opposite to that which is observed in gases. This 
is caused by the decrease of water viscosity with increasing temperature. Cooling causes the 
appearance of an inflection point in the mean velocity profile near the wall and, consequently, 
it destabilizes the flow. Heating, on the other hand, gives a fuller velocity profile and, 
accordingly, it stabilizes the flow. 

A sufficiently strong dependence of the stability characteristics (the minimum critical 
Reynolds numbers and the coefficients of spatial growth of the perturbations) for a surface 
layer of water on the superheating of the surface gives grounds for expectations that, for an 
appropriate temperature distribution along the surface, a considerable increase or decrease 
of the flow stability can be obtained. Detailed investigations of this problem can play an 
important role in the solution of the control of the boundary layer. The practical importance 
of the problem is confirmed also by the results of the experimental work [8] which have a 
preliminary character and indicate that the transition of a laminar boundary layer to a turbu- 
lent one depends, to a considerable degree, on the longitudinal temperature gradient at the 
wall. 

In the present work we study the effect of nonuniformity of the surface temperature dis- 
tribution on the development of small perturbations in a laminar boundary layer of an incom- 
pressible liquid. It is shown that, when the total heat flux remains unchanged, the posi- 
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